C:\xampp\htdocs\stokar\app\Models\Brand.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;
use Illuminate\Database\Eloquent\Relations\BelongsTo;

class Brand extends Model
{
 use HasFactory, SoftDeletes;

 /**
 * Los atributos que se pueden asignar masivamente.
 */
 protected $fillable = [
 'company_id',
 'name',
 'description',
 'status',
];

 /**
 * Obtener la empresa a la que pertenece la marca.
 */
 public function company(): BelongsTo
 {
 return $this->belongsTo(Company::class);
 }

 /**
 * Scope para filtrar solo marcas activas (útil para selectores en el frontend).
 */
 public function scopeActive($query)
 {
 return $query->where('status', 'active');
 }
}

C:\xampp\htdocs\stokar\app\Models\CashCount.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Support\Facades\Auth;

class CashCount extends Model
{
 use HasFactory;

 protected $fillable = [
 'user_id',
 'store_id',
 'company_id',
 'opening_balance',
 'expected_amount',
 'actual_amount',
 'difference',
 'notes',
];

 /**
 * Casts de atributos para asegurar precisión monetaria.
 */
 protected $casts = [
 'opening_balance' => 'decimal:2',
 'expected_amount' => 'decimal:2',
 'actual_amount' => 'decimal:2',
 'difference' => 'decimal:2',
 'created_at' => 'datetime',
];

 /**
 * Boot function para asignar automáticamente la empresa al crear el corte.
 */
 protected static function boot()
 {
 parent::boot();

 static::creating(function ($cashCount) {
 // Asigna automáticamente la empresa del usuario que realiza el corte
 if (!$cashCount->company_id && Auth::check()) {
 $cashCount->company_id = Auth::user()->company_id;
 }
 });
 }

 // --- RELACIONES ---

 /**
 * El corte pertenece a una empresa.
 */
 public function company(): BelongsTo
 {
 return $this->belongsTo(Company::class);
 }

 /**
 * El corte pertenece a un usuario (cajero/operativo).
 */
 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 /**
 * El corte pertenece a una tienda específica.
 */
 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\CashRegister.php<?php

namespace App\Models;

use App\Traits\BelongsToCompany; // Importamos el Trait
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Database\Eloquent\SoftDeletes;

class CashRegister extends Model
{
 use HasFactory, SoftDeletes, BelongsToCompany; // Aplicamos el Trait aquí

 protected $fillable = [
 'company_id',
 'store_id',
 'name',
 'status'
];

 /**
 * La caja pertenece a una tienda específica.
 */
 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }

 /**
 * Una caja tiene muchos turnos (Shifts).
 */
 public function shifts(): HasMany
 {
 return $this->hasMany(Shift::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\Category.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Support\Facades\Auth;
use Illuminate\Support\Str;

class Category extends Model
{
 use HasFactory, SoftDeletes;

 protected $fillable = ['company_id', 'name', 'slug', 'description', 'is_active'];

 protected static function boot()
 {
 parent::boot();

 static::creating(function ($category) {
 // Asigna la empresa automáticamente
 if (!$category->company_id && Auth::check()) {
 $category->company_id = Auth::user()->company_id;
 }
 // Genera el slug automáticamente si no existe
 if (!$category->slug) {
 $category->slug = Str::slug($category->name);
 }
 });
 }

 /**
 * Una categoría pertenece a una empresa.
 */
 public function company(): BelongsTo
 {
 return $this->belongsTo(Company::class);
 }

 /**
 * Una categoría tiene muchos productos.
 */
 public function products(): HasMany
 {
 return $this->hasMany(Product::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\Company.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\HasMany;
// Se elimina el uso de SoftDeletes para garantizar borrado físico real

class Company extends Model
{
 // Se elimina el trait SoftDeletes
 use HasFactory;

 /**
 * Campos habilitados para asignación masiva.
 * Incluimos los campos de control SaaS (status, plan, límites).
 */
 protected $fillable = [
 'name',
 'address',
 'phone',
 'tax_id',
 'status',
 'plan_name',
 'license_expires_at',
 'store_limit'
];

 /**
 * Casts para tipos de datos específicos.
 */
 protected $casts = [
 'license_expires_at' => 'datetime',
 'store_limit' => 'integer',
];

 // --- RELACIONES ---

 /**
 * Una empresa tiene muchos usuarios (Administradores, Cajeros, etc.).
 */
 public function users(): HasMany
 {
 return $this->hasMany(User::class);
 }

 /**
 * Una empresa tiene muchas tiendas (Multi-sucursal).
 */
 public function stores(): HasMany
 {
 return $this->hasMany(Store::class);
 }

 /**
 * Una empresa tiene muchos productos (Catálogo maestro).
 */
 public function products(): HasMany
 {
 return $this->hasMany(Product::class);
 }

 /**
 * Una empresa tiene muchas ventas.
 */
 public function sales(): HasMany
 {
 return $this->hasMany(Sale::class);
 }

 /**
 * Una empresa tiene muchas cajas registradoras.
 */
 public function cashRegisters(): HasMany
 {
 return $this->hasMany(CashRegister::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\Inventory.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Inventory extends Model
{
 //
}

C:\xampp\htdocs\stokar\app\Models\InventoryLog.php
<?php

namespace App\Models;

use App\Traits\BelongsToCompany;
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;

class InventoryLog extends Model
{
 use HasFactory, BelongsToCompany;

 protected $fillable = [
 'company_id',
 'store_id',
 'product_id',
 'user_id',
 'type',
 'quantity',
 'stock_before',
 'stock_after',
 'reason',
 'reference_id'
];

 protected $casts = [
 'quantity' => 'integer',
 'stock_before' => 'integer',
 'stock_after' => 'integer',
];

 // --- RELACIONES ---

 public function product(): BelongsTo
 {
 return $this->belongsTo(Product::class);
 }

 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\Order.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Support\Facades\Auth;

class Order extends Model
{
 use HasFactory;

 protected $fillable = [
 'order_number', // Añadido para resolver el error Field 'order_number' doesn't have a default value
 'store_id',
 'user_id',
 'company_id',
 'status',
 'notes'
];

 /**
 * Casts de atributos para manejo de fechas y estados.
 */
 protected $casts = [
 'created_at' => 'datetime',
 'updated_at' => 'datetime',
];

 /**
 * Boot function para asignar automáticamente datos al crear la orden.
 */
 protected static function boot()
 {
 parent::boot();

 static::creating(function ($order) {
 // 1. Asigna automáticamente la empresa del usuario logueado
 if (!$order->company_id && Auth::check()) {
 $order->company_id = Auth::user()->company_id;
 }

 // 2. Generación automática del Folio (order_number)
 // Formato: ORD-YYYYMMDD-0001
 $date = now()->format('Ymd');
 $count = static::whereRaw('DATE(created_at) = CURRENT_DATE')->count();
 $order->order_number = 'ORD-' . $date . '-' . str_pad($count + 1, 4, '0', STR_PAD_LEFT);
 });
 }

 /**
 * Relación: Una orden pertenece a una empresa (Multitenancy).
 */
 public function company(): BelongsTo
 {
 return $this->belongsTo(Company::class);
 }

 /**
 * Relación: Una orden pertenece a una tienda específica.
 */
 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }

 /**
 * Relación: Una orden pertenece al usuario que la generó.
 */
 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 /**
 * Relación: Una orden tiene muchos artículos/detalles.
 */
 public function items(): HasMany
 {
 return $this->hasMany(OrderItem::class);
 }

 /**
 * Helper para obtener el total de la orden sumando sus items.
 * Se cambió 'quantity' por 'quantity_sent' para coincidir con tu migración/controlador.
 */
 public function getTotalAttribute()
 {
 return $this->items->sum(function($item) {
 return ($item->cost_price ?? 0) * ($item->quantity_sent ?? 0);
 });
 }
}

C:\xampp\htdocs\stokar\app\Models\OrderItem.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Casts\Attribute;

class OrderItem extends Model
{
 use HasFactory;

 protected $fillable = [
 'order_id',
 'product_id',
 'quantity_sent',
 'quantity_received',
 'cost_price'
];

 /**
 * Casts de atributos.
 */
 protected $casts = [
 'quantity_sent' => 'integer',
 'quantity_received' => 'integer',
 'cost_price' => 'decimal:2',
];

 /**
 * Relación: El ítem pertenece a una orden de inventario.
 */
 public function order(): BelongsTo
 {
 return $this->belongsTo(Order::class);
 }

 /**
 * Relación: El ítem está vinculado a un producto específico.
 */
 public function product(): BelongsTo
 {
 return $this->belongsTo(Product::class);
 }

 /**
 * Atributo calculado: Diferencia entre lo enviado y lo recibido.
 * Si el resultado es negativo, significa que faltó mercancía.
 */
 protected function difference(): Attribute
 {
 return Attribute::make(
 get: fn () => $this->quantity_received - $this->quantity_sent,
);
 }

 /**
 * Subtotal del ítem.
 * Si ya se recibió, calcula sobre lo recibido.
 * Si no (orden pendiente), calcula sobre lo enviado para mostrar el total estimado.
 */
 protected function subtotal(): Attribute
 {
 return Attribute::make(
 get: function () {
 $quantity = ($this->quantity_received > 0) ? $this->quantity_received : $this->quantity_sent;
 return $quantity * ($this->cost_price ?? 0);
 },
);
 }
}

C:\xampp\htdocs\stokar\app\Models\Product.php
<?php

namespace App\Models;

use App\Traits\BelongsToCompany;
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsToMany;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Relations\HasMany;

class Product extends Model
{
 use HasFactory, BelongsToCompany;

 protected $fillable = [
 'company_id',
 'category_id',
 'name',
 'brand',
 'barcode',
 'cost',
 'price',
 'tax_percentage',
 'is_active'
];

 protected $casts = [
 'category_id' => 'integer',
 'cost' => 'decimal:2',
 'price' => 'decimal:2',
 'tax_percentage' => 'decimal:2',
 'is_active' => 'boolean',
];

 // --- RELACIONES ---

 public function category(): BelongsTo
 {
 return $this->belongsTo(Category::class);
 }

 public function stores(): BelongsToMany
 {
 return $this->belongsToMany(Store::class, 'product_store')
 ->withPivot('stock', 'min_stock', 'max_stock', 'aisle_location', 'company_id')
 ->withTimestamps();
 }

 /**
 * Relación con los items vendidos para reportes de movimiento
 */
 public function saleItems(): HasMany
 {
 return $this->hasMany(SaleItem::class);
 }

 // --- ACCESORS Y MÉTODOS PARA REPORTES ---

 /**
 * Calcula el precio con impuestos incluidos
 */
 public function getPriceWithTaxAttribute()
 {
 return $this->price * (1 + ($this->tax_percentage / 100));
 }

 /**
 * Obtiene el stock total sumando todas las tiendas (Reporte General)
 */
 public function getTotalStockAttribute()
 {
 return $this->stores->sum('pivot.stock');
 }

 /**
 * Método de ayuda para obtener el stock en una tienda específica
 */
 public function stockInStore($storeId)
 {
 $store = $this->stores()->where('store_id', $storeId)->first();
 return $store ? $store->pivot->stock : 0;
 }
}

C:\xampp\htdocs\stokar\app\Models\Sale.php
<?php

namespace App\Models;

use App\Traits\BelongsToCompany;
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Database\Eloquent\SoftDeletes;
use Illuminate\Database\Eloquent\Builder;

class Sale extends Model
{
 use HasFactory, SoftDeletes, BelongsToCompany;

 protected $fillable = [
 'company_id',
 'store_id',
 'cash_register_id',
 'shift_id', // Fundamental para vincular la venta al arqueo de caja actual
 'user_id',
 'subtotal',
 'tax_total',
 'total',
 'payment_method',
 'cash_received',
 'change_given',
 'status',
 'notes'
];

 protected $casts = [
 'subtotal' => 'decimal:2',
 'tax_total' => 'decimal:2',
 'total' => 'decimal:2',
 'cash_received' => 'decimal:2',
 'change_given' => 'decimal:2',
 'created_at' => 'datetime',
 'updated_at' => 'datetime',
 'deleted_at' => 'datetime',
];

 // --- ACCESSORS PARA REPORTES ---

 /**
 * Calcula la utilidad total de la venta sumando la utilidad de cada item
 */
 public function getProfitAttribute()
 {
 return $this->items->sum(function ($item) {
 // Aseguramos que existan valores para evitar errores de cálculo
 return (($item->price_at_sale ?? 0) - ($item->cost_at_sale ?? 0)) * ($item->quantity ?? 0);
 });
 }

 // --- SCOPES DE FILTRADO ---

 /**
 * Filtra ventas por rango de fechas para el módulo de reportes
 */
 public function scopeBetweenDates(Builder $query, $from, $to): Builder
 {
 return $query->whereBetween('created_at', [$from . ' 00:00:00', $to . ' 23:59:59']);
 }

 /**
 * Solo ventas completadas (excluye canceladas o pendientes)
 */
 public function scopeCompleted(Builder $query): Builder
 {
 return $query->where('status', 'completed');
 }

 // --- RELACIONES ---

 public function items(): HasMany
 {
 return $this->hasMany(SaleItem::class);
 }

 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }

 public function cashRegister(): BelongsTo
 {
 return $this->belongsTo(CashRegister::class, 'cash_register_id');
 }

 /**
 * Relación con el turno (Shift) en el que se realizó la venta.
 * Esto permite auditar qué billetes había en caja cuando se hizo esta venta.
 */
 public function shift(): BelongsTo
 {
 return $this->belongsTo(Shift::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\SaleItem.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;

class SaleItem extends Model
{
 use HasFactory;

 protected $fillable = [
 'sale_id',
 'product_id',
 'quantity',
 'price_at_sale',
 'cost_at_sale',
 'tax_amount',
 'subtotal'
];

 protected $casts = [
 'quantity' => 'integer',
 'price_at_sale' => 'decimal:2',
 'cost_at_sale' => 'decimal:2',
 'tax_amount' => 'decimal:2',
 'subtotal' => 'decimal:2',
];

 // --- ATRIBUTOS DINÁMICOS PARA REPORTES ---

 /**
 * Calcula la utilidad neta de este item (Precio - Costo) * Cantidad
 */
 public function getProfitAttribute()
 {
 return ($this->price_at_sale - $this->cost_at_sale) * $this->quantity;
 }

 /**
 * Calcula el total bruto (incluyendo impuestos si el subtotal no los tiene)
 */
 public function getTotalAttribute()
 {
 return $this->subtotal + $this->tax_amount;
 }

 // --- RELACIONES ---

 public function sale(): BelongsTo
 {
 return $this->belongsTo(Sale::class);
 }

 public function product(): BelongsTo
 {
 return $this->belongsTo(Product::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\Shift.php
<?php

namespace App\Models;

use App\Traits\BelongsToCompany;
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\Relations\HasMany;

class Shift extends Model
{
 use HasFactory, BelongsToCompany;

 protected $fillable = [
 'company_id',
 'store_id',
 'cash_register_id',
 'user_id',
 'opening_balance',
 'opening_details', // Nuevo: Para desglose de billetes inicial
 'cash_sales_total',
 'expected_amount',
 'actual_amount',
 'closing_details', // Nuevo: Para desglose de billetes final
 'difference',
 'opened_at',
 'closed_at',
 'status',
 'notes'
];

 protected $casts = [
 'opened_at' => 'datetime',
 'closed_at' => 'datetime',
 'opening_balance' => 'decimal:2',
 'cash_sales_total' => 'decimal:2',
 'expected_amount' => 'decimal:2',
 'actual_amount' => 'decimal:2',
 'difference' => 'decimal:2',
 'opening_details' => 'array', // Casteo a array para manejar JSON
 'closing_details' => 'array', // Casteo a array para manejar JSON
];

 // --- RELACIONES ---

 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }

 public function cashRegister(): BelongsTo
 {
 return $this->belongsTo(CashRegister::class);
 }

 public function sales(): HasMany
 {
 return $this->hasMany(Sale::class);
 }

 // --- LÓGICA DE NEGOCIO ---

 /**
 * Scope para obtener solo el turno activo del usuario actual.
 */
 public function scopeCurrent($query)
 {
 return $query->where('user_id', auth()->id())
 ->where('status', 'open');
 }

 /**
 * Comprueba si el turno está abierto.
 */
 public function isOpen(): bool
 {
 return $this->status === 'open';
 }
}

C:\xampp\htdocs\stokar\app\Models\Store.php
<?php

namespace App\Models;

use App\Traits\BelongsToCompany; // Importamos el Trait
use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Relations\HasMany;
use Illuminate\Database\Eloquent\Relations\BelongsTo;
use Illuminate\Database\Eloquent\SoftDeletes;

class Store extends Model
{
 use HasFactory, SoftDeletes, BelongsToCompany; // Aplicamos el Trait aquí

 protected $fillable = [
 'company_id',
 'user_id', // Añadido: para poder asignar un encargado a la tienda
 'name',
 'location',
 'phone',
 'is_active'
];

 /**
 * Una tienda pertenece a un usuario (Encargado/Admin).
 * Esto soluciona el error RelationNotFoundException.
 */
 public function user(): BelongsTo
 {
 return $this->belongsTo(User::class);
 }

 /**
 * Una tienda tiene muchas cajas registradoras.
 */
 public function cashRegisters(): HasMany
 {
 return $this->hasMany(CashRegister::class);
 }

 /**
 * Una tienda tiene muchos productos vinculados (Inventario).
 */
 public function products()
 {
 return $this->belongsToMany(Product::class, 'product_store')
 ->withPivot('stock', 'min_stock', 'max_stock')
 ->withTimestamps();
 }
}

C:\xampp\htdocs\stokar\app\Models\Supplier.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Supplier extends Model
{
 use HasFactory, SoftDeletes;

 /**
 * Los atributos que se pueden asignar de forma masiva.
 *
 * @var array<int, string>
 */
 protected $fillable = [
 'name',
 'tax_id',
 'email',
 'phone',
 'contact_person',
 'address',
 'city',
 'is_active',
];

 /**
 * Los atributos que deben ser convertidos a tipos nativos.
 *
 * @var array<string, string>
 */
 protected $casts = [
 'is_active' => 'boolean',
];
}

C:\xampp\htdocs\stokar\app\Models\Transfer.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Transfer extends Model
{
 use HasFactory, SoftDeletes;

 protected $fillable = [
 'origin_store_id',
 'destination_store_id',
 'user_id',
 'status',
 'notes',
 'sent_at',
 'received_at'
];

 protected $casts = [
 'sent_at' => 'datetime',
 'received_at' => 'datetime',
];

 // Relación con la tienda de origen
 public function originStore()
 {
 return $this->belongsTo(Store::class, 'origin_store_id');
 }

 // Relación con la tienda de destino
 public function destinationStore()
 {
 return $this->belongsTo(Store::class, 'destination_store_id');
 }

 // Relación con el usuario que creó el traslado
 public function user()
 {
 return $this->belongsTo(User::class);
 }

 // Relación con los productos/ítems del traslado
 public function items()
 {
 return $this->hasMany(TransferItem::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\TransferItem.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;

class TransferItem extends Model
{
 use HasFactory;

 protected $fillable = [
 'transfer_id',
 'product_id',
 'quantity'
];

 // Relación inversa con el traslado
 public function transfer()
 {
 return $this->belongsTo(Transfer::class);
 }

 // Relación con el producto para saber qué se está enviando
 public function product()
 {
 return $this->belongsTo(Product::class);
 }
}

C:\xampp\htdocs\stokar\app\Models\User.php
<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Foundation\Auth\User as Authenticatable;
use Illuminate\Notifications\Notifiable;
use Illuminate\Database\Eloquent\Relations\BelongsTo;

class User extends Authenticatable
{
 use HasFactory, Notifiable;

 /**
 * Campos habilitados para asignación masiva.
 */
 protected $fillable = [
 'name',
 'email',
 'password',
 'company_id',
 'store_id',
 'role',
 'is_active',
 'store_limit', // Agregado: para que permita guardar el límite
 'license_expires_at', // Agregado: para que permita guardar la fecha
];

 /**
 * Atributos ocultos para la API.
 */
 protected $hidden = [
 'password',
 'remember_token',
];

 /**
 * Casts de atributos.
 */
 protected $casts = [
 'email_verified_at' => 'datetime',
 'password' => 'hashed',
 'is_active' => 'boolean',
 'license_expires_at' => 'date', // Agregado: para manejarlo como objeto Carbon
];

 // --- RELACIONES ---

 public function company(): BelongsTo
 {
 return $this->belongsTo(Company::class);
 }

 public function store(): BelongsTo
 {
 return $this->belongsTo(Store::class);
 }

 // --- HELPERS DE ROL (Actualizados a la nueva migración) ---

 /**
 * Verifica si el usuario es Super Admin del SaaS.
 */
 public function isSuperAdmin(): bool
 {
 return $this->role === 'super_admin';
 }

 /**
 * Verifica si el usuario es Dueño de empresa (SaaS Client).
 */
 public function isOwner(): bool
 {
 return $this->role === 'owner';
 }

 /**
 * Verifica si el usuario es Administrador de Tienda.
 */
 public function isAdmin(): bool
 {
 return $this->role === 'admin';
 }

 /**
 * Verifica si el usuario es un Cajero.
 */
 public function isCashier(): bool
 {
 return $this->role === 'cashier';
 }
}
[bookmark: _GoBack]
